Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks.

نویسندگان

  • Johan Nilsson
  • Mattias Ohlsson
  • Lars Thulin
  • Peter Höglund
  • Samer A M Nashef
  • Johan Brandt
چکیده

OBJECTIVE The artificial neural network model is a nonlinear technology useful for complex pattern recognition problems. This study aimed to develop a method to select risk variables and predict mortality after cardiac surgery by using artificial neural networks. METHODS Prospectively collected data from 18,362 patients undergoing cardiac surgery at 128 European institutions in 1995 (the European System for Cardiac Operative Risk Evaluation database) were used. Models to predict the operative mortality were constructed using artificial neural networks. For calibration a sixfold cross-validation technique was used, and for testing a fourfold cross-testing was performed. Risk variables were ranked and minimized in number by calibrated artificial neural networks. Mortality prediction with 95% confidence limits for each patient was obtained by the bootstrap technique. The area under the receiver operating characteristics curve was used as a quantitative measure of the ability to distinguish between survivors and nonsurvivors. Subgroup analysis of surgical operation categories was performed. The results were compared with those from logistic European System for Cardiac Operative Risk Evaluation analysis. RESULTS The operative mortality was 4.9%. Artificial neural networks selected 34 of the total 72 risk variables as relevant for mortality prediction. The receiver operating characteristics area for artificial neural networks (0.81) was larger than the logistic European System for Cardiac Operative Risk Evaluation model (0.79; P = .0001). For different surgical operation categories, there were no differences in the discriminatory power for the artificial neural networks (P = .15) but significant differences were found for the logistic European System for Cardiac Operative Risk Evaluation (P = .0072). CONCLUSIONS Risk factors in a ranked order contributing to the mortality prediction were identified. A minimal set of risk variables achieving a superior mortality prediction was defined. The artificial neural network model is applicable independent of the cardiac surgical procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction the Return Fluctuations with Artificial Neural Networks' Approach

Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...

متن کامل

The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks

In this work, artificial neural network (ANN) has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocar...

متن کامل

Diagnosis Prediction of Lichen Planus, Leukoplakia and Oral Squamous Cell Carcinoma by using an Intelligent System Based on Artificial Neural Networks

Introduction: Diagnosis, prediction and control of oral lesions is usually done classically based on clinical signs and histopathologic features. Due to lack of timely diagnosis in all conventional methods or differential diagnosis, biopsy of patient is needed. Therefore, the patient might be irritated. So, an intelligent method for quick and accurate diagnosis would be crucial. Intelligent sys...

متن کامل

Statistical Prediction of Probable Seismic Hazard Zonation of Iran Using Self-organized Artificial Intelligence Model

The Iranian plateau has been known as one of the most seismically active regions of the world, and it frequently suffers destructive and catastrophic earthquakes that cause heavy loss of human life and widespread damage. Earthquakes are regularly felt on all sides of the region. Prediction of the occurrence location of the future earthquakes along with determining the probability percentage can...

متن کامل

Prediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks

This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of thoracic and cardiovascular surgery

دوره 132 1  شماره 

صفحات  -

تاریخ انتشار 2006